Extended Stochastic Gradient Identification Method for Hammerstein Model Based on Approximate Least Absolute Deviation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems

An extended stochastic gradient algorithm is developed to estimate the parameters of Hammerstein–Wiener ARMAX models. The basic idea is to replace the unmeasurable noise terms in the information vector of the pseudo-linear regression identification model with the corresponding noise estimates which are computed by the obtained parameter estimates. The obtained parameter estimates of the identif...

متن کامل

On Least Absolute Deviation Estimators For One Dimensional Chirp Model

It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that th...

متن کامل

A Recursive Method of Identification of Hammerstein Model Based on Least Squares Support Vector Machines

In the domain of industrial process modeling and control, Hammerstein model has been used widely to describe a class of nonlinear systems. Goethals et al. (2005) proposed a method based on Least Squares Support Vector Machines (LSSVM) to identify the input-output relationship of the Hammerstein model. Unfortunately, as the data points grow, this kernel learning approach costs much time correspo...

متن کامل

Analysis of least absolute deviation

The least absolute deviation or L1 method is a widely known alternative to the classical least squares or L2 method for statistical analysis of linear regression models. Instead of minimizing the sum of squared errors, it minimizes the sum of absolute values of errors. Despite its long history and many ground-breaking works (cf. Portnoy and Koenker (1997) and references therein), the former has...

متن کامل

System Identification Using Reweighted Zero Attracting Least Absolute Deviation Algorithm

In this paper, the l1 norm penalty on the filter coefficients is incorporated in the least mean absolute deviation (LAD) algorithm to improve the performance of the LAD algorithm. The performance of LAD, zero-attracting LAD (ZA-LAD) and reweighted zero-attracting LAD (RZA-LAD) are evaluated for linear time varying system identification under the non-Gaussian (α-stable) noise environments. Effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2016

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2016/9548428